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A method based on the variational calculus “in the large” (Morse theory) and [ 11, is proposed for proving 

the existence of chaotic motions in Hamiltonian systems with two degrees of freedom. The method is used 

to analyse the motion of a dynamically symmetric heavy rigid body with its centre of mass in a diametral 

plane. Dynamically asymmetric bodies may be treated similarly. 

The treatment of non-integrable systems by perturbation methods is feasible only in near-integrable 

systems [2]. In rigid body dynamics such methods may be used to establish non-integrability and chaotic 

behaviour of solutions only for parameter values not far from those corresponding to known integrable 

cases. The method proposed below is free from such restrictions. 

1. CHAOTIC MOTIONS OF A RIGID BODY 

THE EULER-POISSON equations for the motion of a rigid body are 

JU’=[jO, o]+[r, e] r’=lr, WI (1.1) 

where y is the Poisson unit vector, w is the angular velocity vector, J is the inertia tensor and e is the 
product of the weight of the body and the radius-vector of its centre of mass. Equations (1.1) are 
Hamiltonian on the four-dimensional level set 

M=( (Al), r)=c, jyI=I)=R 

of the area integral and have an energy integral 

(1.2) 

H=T+V; T=(lo, 0)/2, V=(e, 7) (1.3) 

Let us assume that the centre of mass is not a fixed point of the motion. Then in all known cases in 
which system (1.1) is completely integrable on the level (1.2)-Lagrange, Kovalevskaya and 
Goryachev-Chaplygin-the body is dynamically symmetric, and in the last two cases the centre of 
mass lies in a diametral plane of the ellipsoid of inertia. We shall assume that this is the case and, 
moreover, that the area constant c is zero, as it is in the Goryachev-Chaplygin case. 

The units of measurement and axes of inertia of the body may be chosen in such a way that e = el 
is a unit basis vector, e3 is a vector pointing along the dynamic axis of symmetry and the axial 
moment of inertia is unity. Then system (1.1) on the level M depends on a single non-dimensional 
parameter a-the ratio of the equatorial and axial moments of inertia. By the inequality between 
the moments of inertia, l/2 da < ~0. Equations (1.1) on the level (1.2) are integrable if a = 1 (a 
spherical ellipsoid of inertia), a = 2 (the Kovalevskaya case) and u = 4 (the Goryachev-Chaplygin 
case). It has been proved that when c # 0 and u % 1, Eqs (1.1) are non-integrable in Liouville’s sense 
on the level (1.2) (31, but up to now non-integrability has not been proved in our case of c = 0. 

Theorem 1. Let a > 4. Then system (1.1) on the zero level M of the area integral has no analytic 
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first integrals independent of the energy H or analytic symmetry groups [4]. For values of h slightly 
larger than the maximum 1 of the potential energy, the orbits of the system behave in a stochastic 
manner on the invariant subset {H = h} 17 M of the energy level in phase space. 

Proofs that Hamiltonian systems are non-integrable and possess stochastic behaviour are usually 
based on constructing a sufficient number of transversal homoclinic (doubly asymptotic) orbits (see 
e.g. [l--6]). Proofs of existence for such orbits use the Mel’nikov-Arnol’d method, which is 
applicable only to near-integrable systems. In the present situation this can be done only when a is 
dose to 1,2,4 or 00. We shall present a proof of the existence of homochnic orbits based on Morse 
theory [7], using methods proposed in an earlier paper [S]. 

2. THE EXISTENCE OF HOMOCLINIC ORBITS 

The potential energy V reaches its maximum value 1 at the point P = {y = e} of the Poisson 
sphere S2. The corresponding equilibrium position 0 = {o = 0, y = e} of system (1.1) in the phase 
space M cl: R6 is an unstable position of equilibrium with real characteristic exponents +l, +ll~“~. 
There exist four pendulum-type orbits of system (1.1) on level M, doubly asymptotic to 0, so that 
the rigid body rotates about a horizontal axis orthogonal to the radius-vector of the centre of mass 
e = e, . Two pendulum-type orbits rl 2 , CM, corresponding to rotation of the body about the 
horizontal axis e2, are defined by 

Yl==O, ~,2+y32=1, O=&e?, w,=*(2(1-y,)/a)“3 (2-l) 

These orbits may be derived from one another by time reversal. The two other pendulum-type 
orbits 1’3,4 c M correspond to motion about the horizontal axis of symmetry e3 and are defined by 

73=0, ~,V-~:“=f, O=Q.&$, ti,,=*(2(1-~,))“’ (2.2) 

The orbit r3 corresponds to w3 > 0 and lr4 to w3 < 0. 
Through the point OEM there pass two two-dimensional invariant analytic manifolds W” and 

W”--the sets of orbits of system (1.1) asymptotic to the equilibrium position 0 as t-+ 03 and t-+ --cQ, 
respectively. The homoclinic orbits (HOs) r1 - r4 are the curves in which W” and W”’ intersect. 

We recall that an HO is said to be transversal if the manifolds IV” and W” intersect along it at a non-zero 
angle. It is true that the HOs Ii - I,, are transversal for almost all a, but this does not necessarily imply that 
system (1,l) is non-integrable and possesses complex behaviour on M, because the characteristic exponents of 
the equilibrium position 0 are real ]9]. For example, it can be shown that when a = 2 all pendulum-type HOs 
are transversal, although the system is integrable. 

By a theorem of Turayev and Shil’nikov [l], a HamiItonian system that has an equilibrium 
position with rest, non-vanishing characteristic exponents will display chaotic behaviour if there 
exist at least three transversal HOs which, as t+ CC and t+ --co, are tangent to the leading 
eigendirections of the equation of the first approximation, corresponding to the greatest negative 
characteristic exponent and least positive characteristic exponent, respectively (non-integrability 
was established in [5] under slightly different assumptions). 

If a> 1 (equatorial moment of inertia greater than axial moment of inertia), the leading 
eigendirections corresponding to the characteristic exponents for the equilibrium position 0 of 
system (1.1) on M, which are equal to l/a”’ in absolute value, are the entry and exit directions of the 
doubly asymptotic pendulum-type orbits r3 and r4. The pendulum-type orbits lY1 and rZ are tangent 
to the eigendirections corresponding to the characteristic exponent 1 of greatest absolute value. 
Therefore, all other orbits asymptotic to 0, if they exist, are tangent to the leading directions at 0. 
Thus, in order to apply the Turayev-Shil’nikov theorem it will suffice to show that r, and r4 are 
transversal and to construct a transversal non-pendulum-type orbit doubly asymptotic to 0. 

Theorem 2. Let a >4. Then the pendulum-type HOs r3 and r4 are transversal. Besides the 
pendulum-type orbits, there exist at least four other orbits I’, , . . . , r8 doubly asymptotic to 0, 
where the Poisson vector for rs and l?, belongs to the hemisphere yz>O, that for l’, and TX to the 
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hemisphere y3 < 0. Each of these orbits is either transversal or the contact of W” and W” along it is 
of odd order. The orbits r5,6 and r7,s are obtained from one another by time reversal. 

The analytic manifolds W” and W” on the three-dimensional energy level {H = l} f’M possess 
odd-order contact if the parts into which the intersection curves divide their own neighbourhoods in 

W” lie on different sides of W”. Using the analyticity of the system, one can show that for almost all 
a > 4 the HOs we have constructed are transversal, but the variational methods used here are useless 

to determine the exceptional values of the parameter. 

Corollary I. For sufficiently small h- 1 >O the intersection of a neighbourhood of the set 

UT,U{O}CM, i=3, . . . . 8, with the energy level {H = h} f~ M contains an invariant subset in 

which system (1.1) is topologically equivalent to a suspension over a topological Markov chain (or 
Bernoulli scheme). 

When the HOs constructed are transversal, the corollary follows from Theorem 2 and [I]. The form of the 
transition matrix of the Markov chain was also described in [ 11. It can be shown that the results of [l] carry over 
to the case of non-transversal HOs of odd multiplicity. That system (1.1) is non-integrable over M follows from 
this corollary. Non-integrability may also be proved by the methods in [5]. 

The remaining part of this paper is devoted to a proof of Theorem 2 via Morse theory. 

3. THE MINIMALITY OF PENDULUM-TYPE ORBITS 

Transforming system (1.1) on M from y, o variables to y, y’ variables with zero area constant, we 
obtain a natural system whose configuration space is the Poisson sphere S2{y} and whose phase 

space is M = TS2. If (Ju, y) = 0, it follows from (1.1) that o = [y’, &y]l(r, Jr). Using (1.3), we find 
the kinetic energy T = Vi(J’y’, y’)l(Jy, y), where J’ is the adjoint matrix. According to the 
Maupertuis-Jacobi principle of least action, the projections of the orbit of energy h = 1 of system 

(1.1) on the Poisson sphere are geodesics of the Jacobi metric 

II~‘Il’=z(~-~‘(r))~(r. T’)=(i--(e, 7)) (j’r’, ~‘)lOy, y) (3.1) 

The Jacobi metric is degenerate at the point of maximum of potential energy P = {y = el }. The 
Jacobi action of the curve t+ y (t) E S2 [the length of the curve in the metric (3. l)] is 

s (\q I= \ ((1 - yl) (\Y,-” -/- y2’2 + ay,‘2),‘(ay,2 i- a~,2 + or’))‘- dt 
. 

Let r c S* be the equator {y3 = 0} of the Poisson sphere. It is the curve described by the vector y 

as it moves along the pendulum-type HOs r_ , 3 4, and therefore a critical point of the action functional 

(3.2) in the class of piecewise-smooth curves with ends at P. 

Remark. Since the Jacobi metric (3.1) degenerates at the point P = {y = l} of the Poisson sphere, 
the integrand in (3.2) is not smooth at P. The concept of a critical point of S must therefore be 
defined more rigorously. This will be done in Sec. 4 by modifying the domain of definition of S: 
instead of the set of curves with ends at P we will consider the set R of curves whose ends lie at a 
small distance (in the Jacobi metric) E from P. 

Lemma 1. If a>4 the equator r is a non-degenerate local minimum point of the Jacobi action 
functional in the class R of piecewise-smooth curves on S2 with ends at P. 

The statement of this lemma means that for all curves in R that lie close to r together with their derivatives, 
the Jacobi action is not less than S(T)-the inequality is strict for all curves near r except those obtained from r 
by reparametrization-and the second variation of S (in the sense of the previous remark) is non-degenerate. 
Lemma 1 is a corollary of the following two lemmas. 

Lemma 2. Let t--+?(t) be a curve in 0. Then ~(~“*S(Y))/&I 2 0, with equality only if the curve is contained in 

the equator r of the Poisson sphere. 
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~raof. Calculating the derivative, we see from (3.2) that 

a(u”%Y(y))/dn=-a’” s (i-y,) “J( (Iy, y) -‘A (l’y’, y’) -‘“y,‘3 (/y, y) -“(l’y’, y’)“Jyg}d1/2>0 

The equality sign will hold only if y3 = 0. The lemma is proved 

Lemma 3. If a = 4 the second variation of the action functional S at a point FE0 is non-negative and has 
degree of degeneracy 1. 

Proof. We will first prove the following lemma. 

Lemma 4. In the Goryachev-Chaplygin case, the stable and unstabfe invariant manifolds W” and W” of the 
equilibrium position 0 are tangent to one another along the pendulum-type homoclinic orbits r~,~ C M and the 
projection V: M = TS2-+S2 of the phase space onto the configuration space maps their neighbourhoods 
diffeomorphically onto the Poisson sphere. 

For the proof we will use the Euler-Poisson variables y, w. Equations (1.1) have an additional integral 
F = 032(w12 -t- wz2) - W,Y3---the Goryachev-Chaplygin integral. On the manifolds VU all the first integrals of 
the problem take constant values, equal to their vatues at 0. Consequently, 

EV”U M’“cN= {ff = f, (l(r). y) =o. [yl = 1, F-O) 

Let L C M be one of the pendulum-type orbits IY3 or r, and Q = {r, o} a point of L. We will determine the 
tangent planes of the invariant manifolds TQ W”, Te W”C R6. 

Let y(t), w(t) be a curve in W” or W” with initial point Q = (y(O), w (0)). Differentiating the energy integral, 
area integral, geometric integral and Goryachev-Chaplygin integral with respect to I at r = 0, we obtain 

W?Q;*+~$‘==O, 4y*W,‘+4yz~2’+03yJL=(jr y,y*‘+yzyz’=O (3.3) 

and o3 (w,“‘f ~2’~) - w1’~3* = 0. Eliminating Ye* and using the fact that f, satisfies (2.2), we can transform the 
last equation to 

((lfy,)(~,‘+r,0z’)*=O (3.4) 

Thus, the set of vectors tangent to Nat Q is a two-dimensional plane in Rh and therefore the tangent planes 
TQ W” = Tu W” = T&V coincide and are given by Eqs (3.3) and (3.4). 

To prove that the manifolds W”,” project diffeomorphically onto the Poisson sphere in the neighbourhood of 
Q, it will suffice to verify that for given y’E TrS*, Eqs (3.3) and (3.4) are uniquely solvable for 0’. At Q we 
have w2#0. If y2#0 then We* = ~3.~44, w2* = Y~*w~ (1 + yI )/4yz, ~3’ = -y, ‘/w3. Since the manifolds TQ W”+ 
depend smoothly on Q, the assertion-is also true when y2 = 0. This proves Lemma 4. 

Lemma 3 is derived from Lemma 4 as follows. Lemma 4 implies that for every point q E S2 close enough to f 
there exists a unique orbit or system (l.l), t-+(y, (t), y+‘(f))E TS2 = M, 06t< --CO, asymptotic to the point 
0 as t--, ~0 and close to the HO L, such that y+(O) = q. and a unique orbit r-,(y_(t), y_‘(6))EM, --to ct<O, 
asymptotic to 0 as t--, ~0 and close to L, such that y_(O) = q. In addition, if qEI’ the function 
Ilr+'(O)- y_'(O)11 vanishes together with its derivatives. Let S+(q) be the Jacobi action of the curve y+ and 
S_(q) that of y_. By the formula for the variation of the action function, ~~‘(0) = rir grad&(q) (the gradient is 
evaluated in the Riemannian metric defined by the kinetic energy on the Poisson sphere). 

For any curve re:n sufficiently close to r that passes through q, we have 
S(y)3S(y+) +S(y_) = S+(q) +-S_(q); but by what we have just proved the first and second differentials of this 
function vanish on IY. This proves Lemma 3. 

Corollary 2. If a>4, every point 4 E S2 sufficiently close to r may be connected to P by exactly 
two locally minimal geodesics 7% of the Jacobi metric. These geodesics do not intersect r and the 
angle between y+ and y_ in the triangle l?y+y- is less than 7~. 

A geodesic is locally minimal if it is a local minimum point of the length functional S relative to all 
curves with the same endpoints. The existence of the geodesics y+ follows from the fact that there 
are no conjugate points on a locally minimal geodesic r. By Lemma 1, the sum S(q) of lengths of the 
curves rlt: has a non-degenerate minimum S(T) on r. For q near r, therefore, the vector gradS(q) 
points away from r. But it can be proved, as in the proof of Lemma 3, that this vector makes equal 
angles with the geodesics I’& and is directed to the angle greater than r that they form. 

Corollary 3. If a>4 the invariant manifolds W”,” intersect transversally along r+, and project 
diffeomorphically onto the Poisson sphere in their neighbourhood. 
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We have thus proved the first assertion of Theorem 2. 

4. PROOF OF THE EXISTENCE OF HOMOCLINIC ORBITS 

The rest of Theorem 2 will follow from a more general statement. Consider a natural Hamiltonian 
system with configuration space S2, kinetic energy T, which is a positive definite quadratic form in 
the velocity, and potential energy V. Assume that T and V are smooth (at least C’). Let V achieve a 
non-degenerate maximum h at a point P E S2. It was proved in [7] that there always exists an orbit of 
energy H = T + V = h which is doubly asymptotic to the equilibrium position P. Its orbit I C S2 is a 
geodesic of the Jacobi metric \Iy’](* = 2(h - V(y)) T(y, y’) in the domain D = S2\{P}. 

Theorem 3. Let the orbit I be a non-degenerate local minimum point of the Jacobi action; 
assume, moreover, that I is the reverse as t+ fm of a leading asymptotic orbit. Then: 

1. In each of the regions into which IY divides S2 there exists an orbit which is doubly asymptotic to 
the equilibrium position P. 

2. If the system is analytic, this orbit is either transversal or of odd multiplicity. 
We may assume that the sphere is oriented; we also fix an orientation of the curve I’, so we can 

speak of the right and left sides of I. In what follows we will limit ourselves to the right region W of 
those into which I? divides the sphere. The first assertion of the theorem may be sharpened as 
follows. 

1’. Let I,s (0~s G 1) be the homotopy of I to a point, consisting of the curves on the sphere with 
their ends at P and lying to the right of I. Then there exists an orbit p, doubly asymptotic to P and 
lying to the right of I, such that 

S(/3)<f+=mas, S(1’,) (4.1) 

The proof will use methods proposed previously in [g]. We note that the part of the proof relating 
to the existence of a HO distinct from I may be generalized to the many-dimensional case. To prove 
the theorem we must show that the action functional S has critical points on fi other than I. The 
Jacobi metric is not complete in the region D, so that the standard methods of Morse theory [7] are 
useless. 

The following lemma was proved in [8]. 

Lemma 5 (the analogue of Gauss’ Lemma). Let p(q) be the distance of a point q E S2 from P in 
the Jacobi metric. There exists 6 > 0 such that p is a smooth function in the domain US = {q E S*: 
0 < p(q) d S}. Every point q E Us can be connected with P in US by a unique geodesic yy of the 
Jacobi metric. This geodesic is of length p(q) and it intersects all the curves C, = {p : p(p) = F} ; 
O< F s 6 at right angles. In particular, n(q) = -y,‘(O) is the outward normal to US. Every geodesic 
other than yq in U, is a segment of L with both ends a, bEC,. It intersects the curves yy at most at 
one point and is tangent to a unique curve C, , O< E <a. In particular, Us is geodesically convex, that 
is, its boundary X6 has positive geodesic curvature. 

Using the orientation of the sphere, we can define which of any two vectors making an acute angle 
is left and which is right. Let W be the rightmost of the domains into which f divides D. It will suffice 
to prove the existence of a homoclinic orbit in W. Let A and B be the points at which I intersects CS ~ 
assuming that r is directed from A to B. 

Lemma 6. There exists a directed geodesic in W, close to I but not intersecting it, with its ends p 
and q on C6 close to A and B, respectively, such that the velocity vector at p points to the left of n(p) 
and the velocity vector at q points to the right of -n(q). 

Proof Let qE&n W be sufficiently close to B. By Lemma 5, y can be connected to P in UT, by a unique 
geadesic yr, of length 6 with initial velocity vector --n (4). By Corollary 1, there is another geodesic close to 1‘, 
connecting P to q. that does not intersect I‘ and intersects & at a point p E x8 n W near A. Its velocity vector at 
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p points along n(p), the velocity vector at q points to the right of -n(q). Consider a geodesic issuing from p 
with initial velocity vector pointing a little to the left of n(p). By continuity, this geodesic satisfies our needs, 
proving the lemma. 

By Lemma 5, the continuation of the geodesic y constructed in Lemma 6 beyond the points p and 
q cuts I& at points@ and q’ such that the segmentsp’p and qq’ are contained in US, with the velocity 
vector at p’ pointing to the right of ---II (p’) and that at q’ to the left of n (9’). If y is sufficiently close 
to r, it can be shown that the segmentspp’ and qq’ do not intersect non-leading principal asymptotic 
directions of the point, and hence the points A, pp’, qq’, B lie on C, in that order. We have used the 
fact that I- is tangent to opposite leading directions as t-a ICC. 

Let K be the compact subset of W bounded by the geodesic y and the segment of the curve Z8 II W 
between p’ and q’. 

Lemma 7. The boundary 8K of K is geodesically concave. This means that any sufficiently short 
segment of a geodesic of the Jacobi metric with its ends on dK does not intersect the interior MdK of 
x. 

Proof. By construction, the boundary of K is the union of a segment of the geodesically concave curve & and 
the geodesic y, but both exterior angles of K are less than V. 

Choose E (0 < E < 6) so small that K does not intersect U, . Let fi be the set of piecewise smooth 
curves 0: [O. 11-D with ends on ): *. Define a functional F on fi as follows: 

(4.2) 

where 11 11 is the Jacobi metric. The functional F is more convenient than the action S for 
applications of Morse theory [7]. Its critical points that are not one-point curves are geodesics of the 
Jacobi metric in D, parametrized in proportion to the arc length and orthogonal to C, at their ends. 
By Lemma 5 they correspond to orbits doubly asymptotic to P. For Morse theory to be applicable, 
we still lack completeness of the Jacobi metric in D. 

Let cp be a real smooth function in (0, m) such that q(x) = 1 for X> 1 and .$ = 1/x2 for Otx< M. 
For any p (0 < p < E) we define a new Riemannian metric (1 [IF in D: 

ll~‘l1”=11~1’11~cp(Q(!?)/P) (4.3) 

This metric is identical with the Jacobi metric outside U,. The distance in this metric from a point 
qE U, to C, is equal to p*/p(q), so that it is complete. The geodesics of the Jacobi metric that 
connect points of US with Pare geodesics of the metric (4.3). Let F,, be the functional defined on 1(2 
by formula (4.2) with the Jacobi metric replaced by (4.3). 

Lemma 8. For any O< p< E, Fv has a critical point p Edl such that p is a curve in W, which 

intersects K and 

F,(~)<C=fL-2E)z (4.4) 

The proof uses standard methods of Morse theory and follows the same procedure as in 181; the details will 
therefore be omitted. The family of curves r,y with ends at P defines a family f3, E R, OG.ys 1. which shrinks the 
segment PO = AB of r to the point PI and is such that for sufficiently small p 

max, F&5.) =maxz F&f GC (4.5) 

Choose a sufficiently fine partition of the interval [O, 11 and let X be the set of polygonal geodesics p of the 
metric (4.3) in 0 that correspond to this partitition, such that F,(p)sC [7]. Then X is a smooth compact 
manifold with boundary {f = C}. where f = F,, is a smooth function on X whose critical points are geodesics of 
the metric (4.3) orthogonal to I& at their ends. Let Y be the set of curves in X that lie in WU r and Z the set of 
curves in Y that intersect K. Then the assertion of the lemma means that f has a critical point on Z. 

Let g,:X-+X, t20, denote the transformation semigroup generated by the vector field -grad f (a 
Reimannian metric on X is defined in [7]). Since the set WN is geodesically convex in the metric (4.3), by 
Lemma 6, it follows that Y and YJZ are invariant with respect to the semigroup g, [S]. Approximating the 
curves of the family p.? by polygonal geodesics, we may assume that &E Y, and (4.5) is true. Iffhas no critical 
points on Yfl 2, then by compactness jlgradfj 2 a > 0 on that set. Then during a time T = C/a the set gr( Y) will 
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not intersect Z (the invariance of YIZ is essential here). Since PO is a geodesic, g&Pa) = f3a. We obtain a 
homotopy g&r) of PO to a point, consisting of curves in the hemisphere W that do not intersect K. This is 
impossible. 

Proof of Theorem 3. Let p be the geodesic of the metric (4.3) constructed in Lemma 7 and let 
P(T) E K, 0 <T < 1. We may assume that p is parametrized in proportion to the arc length. Continue 
p to the left and right of T, up to the nearest point of intersection with C,. We obtain a geodesic yP 
of the Jacobi metric with ends on C, ; moreover, by construction, S(y,) d L and yIJ. intersects K. We 
have here used the fact that p is orthogonal to C, at its ends, so that if, say, p([O, r]) does not 
intersect &, then the continuation of P(t) into the domain of negative t gives a curve p: 
[-(E - t.~)/]] p’ I(, 0] that connects C, with C, 

We may assume that t-+?,(t) is parametrized by arc length and y,(O) E K. Let p--+0. We can 
extract subsequences from y,(O), y,‘(O) that converge respectively to a point in K and to a unit 
vector. The geodesic of the Jacobi metric with the appropriate initial condition corresponds to an 
orbit that is doubly asymptotic to P [S]. This proves the first part of Theorem 3. 

Assume now that the system is analytic. Then the invariant manifolds W”,” of the equilibrium 
position are analytic submanifolds of the phase space. Since r is a transversal doubly asymptotic 
orbit, they do not coincide, and consequently their curves of intersection have finite multiplicites 
and are isolated. The Jacobi action S corresponding to an asymptotic orbit is defined on each of 
these manifolds and the sets {sa C} tl W”,” are compact. Thus the number of orbits of the Jacobi 
action Ss C doubly asymptotic to P is finite. 

Lemma 9. Suppose that all orbits homoclinic to P in the domain W in which the action is not 
greater than C are not transversal and have even multiplicity. Then there exists a smooth function 
V’, as close to V as desired and equal to V outside t&Y,, such that the perturbed system with 
potential energy V’ and the same kinetic energy as before has no orbits of action which are not 
greater than C homoclinic to P and W. 

Let us first see how to deduce the second part of Theorem 3 from this lemma. Suppose that all 
HOs in W of action not greater than L have even multiplicity [L is defined by (4. l)]. Then this is true 
if L is replaced by a C slightly greater than L. By Lemma 9 the perturbed system has no HOs in W of 
action at most C. By the first part of Theorem 3, if V’ is close enough to V the system with potential 
energy V’ will have an orbit, distinct from I- and doubly asymptotic to P, with action at most C. This 
contradiction proves the theorem. 

We shall only sketch the proof of Lemma 9. For any homoclinic orbit in W of even multiplicity, we have a 
geodesic y of the Jacobi metric in W, orthogonal to & at its ends p and q and intersecting K. We may assume 
that q is not a focal point for p, i.e. the manifold W”,” projects diffeomorphically onto D in the neighbourhood 
of q. Then, for all geodesics issuing from a neighbourhood U of p on I& along the normal n to C, , the tangent 
vector at a point of intersection with & near y points to one side of the normal -n, say to the right. An 
exception is the tangent vector to y at q, which points along -n(q). 

Let Q be a point on y near q. Replace V by V’ = V+ oif, where the smooth functionfdoes not vanish in a 
small neighbourhood of Q and the vector gradf(Q) rs&thogonal to y and points to the right. Then it can be 
shown that, if cw>O is small enough, the velocity vectors of all the above geodesics of the Jacobi metric that 
begin in U at a point of intersection with 2;, near q point to the right of the normal -n. Hence it follows that in a 
sufficiently small neighbourhood of y, independent of (Y. there are no doubly asymptotic orbits of the perturbed 
system of action not greater than C. Repeating the construction for each of the finite number of HOs, we get a 
contradiction, since HOs of the perturbed system of action bounded by a constant C may exist only in an 
arbitrarily small neighbourhood of the unperturbed HOs. 
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OPTIMAL CONTROL OF THE ROTATION OF A SOLID WITH 
A FLEXIBLE ROD? 
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Yaroslavl 
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Two optimal control problems may arise when a solid with a rigidly attached rod is rotating in a plane: how 

to steer the system from an initial phase state to a terminal state so as to minimize a quadratic cost 

functional, and time-optimal control. A new method is proposed for constructing optimal controls, based 

on the results of [l, 21 and methods of functional analysis. The controls are constructed as series in terms of 

a certain system of functions. Using the Voigt model of matter, some consideration is also given to a system 

with a viscoelastic rod and analogous results are obtained. The method is applicable to the problem of 

steering the system from an initial to a terminal phase state so as to minimize any convex functional of the 

control. 

1. STATEMENT OF THE PROBLEM 

WE WILL study a mechanical system consisting of a solid with a rigidly attached elastic rod of 

constant cross-section and mass uniformly distributed along its length. At the centre of mass of the 
solid we place an inertial system of coordinates OX, Yl Z, , oriented so that the central axis of the 
rod lies in the 0, X1 Y1 plane. The system may rotate about the O1 Z1 axis, about which the torque 
M’(P) of the controlling forces is applied. Attached to the solid is a system of coordinates 
O’X’Y’Z’, with its origin at the point of insertion of the rod, with the O’X’ axis pointing along the 
tangent to the neutral axis of the rod at the point of insertion and the O’Z’ axis parallel to the Or Z, 
axis. The position of the entire system is uniquely described by the angle of deflection t3 (t’) (between 
the O’X’ and Or X1 axes) and the amount y’(x’, t’) of transverse deformation of the rod at a point x’ 
and time t’ (Fig. 1). 

t Prikl. Mat. Mekh. Vol. 56, No. 2, pp. 24C249, 1992. 


